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Abstract

Based on the governing equations of linear elasticity, this paper develops a novel boundary value method to study
the singular behavior of elastic stress fields at the corners of bimaterial wedges and junctions by using the eigenfunction
expansion technique. The resulted one-dimensional differential system, which consists of the reduced equilibrium equa-
tions and boundary conditions, just relates to an angular coordinate in the polar coordinate system. Implementing dis-
cretization of this differential system by the finite cloud method, we readily derive the so-called generalized
eigenproblem in the singular eigenvalue. The performance of the methodology is subsequently verified through the
well-known crack and interface crack problems, demonstrating high accuracy and quick convergence characteristics.
In addition, a selected set of practically useful models is numerically analyzed to examine the angular variations of
the displacement and stress fields, and the influences of wedge-side boundary conditions to singular behavior are also
studied.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

It is very well documented that the conventional materials do not have the ability to provide the par-
ticular requirements of reinforcement, such as the stronger, the harder, the tougher, the lighter and etc.,
for the striking development of modern industry. Because the properties can be tailored to suit these
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particular requirements, the composites created by the deliberate combination of multiple dissimilar mate-
rials are extensively employed in modern industrial spheres. Although the reinforced composites have the
excellent properties applicable to specified engineering applications, their bonding interfaces near the free
wedge surface or the junction corner inevitably suffer high stress gradients (stress singularities) due to the
mismatches of elasticity and geometry, which may lead to the crack initiation being the precondition for
the failure of structures. Therefore, the comprehensive understanding of singular behavior of multi-mate-
rial junctions and wedges plays the most crucial role in the optimum design and failure analysis of such
systems.

Many researchers have investigated the singular behavior of bonded dissimilar materials with various
methods. The study starts from the pioneering work of Williams (1959) who use the eigenfunction expan-
sion technique to analyze the stress singularity of the interface crack problem. Using the Mellin trans-
form method, Bogy (1971) studies the order of stress singularity and the related displacement and
singular stress fields at the vicinity of the interface wedge of bonded dissimilar materials in plane elastic-
ity problems. On the other hand, Bogy and Wang (1971) and Chen and Nisitani (1993) investigate the
singular behavior of the interface corner problems by Mellin transform method and complex function
method, respectively. Recently, Chen et al. (2002, 2003, 2004) study the interaction problems of a dislo-
cation and a crack based on the complex variable method. The previous asymptotic analysis of stress
singularity tells us one fact that the displacement solutions take to be of the form () in a polar coor-
dinate system (r,0) originated from the singular point. However, these analytical solutions on the char-
acteristic equation for determining the orders of the stress singularity and the angular variations of
displacement and singular stress fields are restricted to a very few specifically geometrical configurations
and material combinations. For the complex problems of bonded materials, the derivation of the explicit
solutions appears to be very difficult even though with outstanding mathematical competence. Fortu-
nately, the numerical method, such as the boundary element method (Liang and Liew, 2001; Xu
et al., 2001; Liew and Liang, 2002, 2003) and the finite element method, can serve as an advisable
and appropriate choice to be resorted to. Bazant and Estenssoro (1979), Somaratna and Ting (1986),
Ghahremani (1991) and Gu and Belytschko (1994) develop a finite element procedure based on the weak
form of the variational principle to extract the three-dimensional stress singularity. Sze and Wang (2000)
propose another finite element formulation by using the weak form of the governing equations for com-
puting the stress singularities at bimaterial interfaces. Pageau et al. (1995) extends the sectorial finite ele-
ment which is devised by Yamada and Okumura (1983) based on the virtual work principle and singular
transformation technique to the singularity analysis of anisotropic materials. All of these finite element
methods result in a linear characteristic matrix equation whose physically admissible eigenvalues and
associated eigenvectors of the analytical models correspond to the singularity orders and the angular
variations of displacement field in the dominant field of stress singularity, respectively. In addition, Xu
et al. (1999) presents a numerical model to determine multiple singularities and related stress intensity
factors starting with the asymptotic stress field and the common numerical results obtained by the
boundary element procedure.

In this paper, a novel boundary value method is developed based on the governing equations of linear
elasticity for computing the orders of stress singularity and the associated angular variations of displace-
ment and singular stress fields for bimaterial systems under inplane loading. The discretization of the result-
ing one-dimensional governing differential system, making up of the reduced equilibrium equations and the
boundary conditions, are accomplished by the finite cloud method (Aluru and Li, 2001). Consequently, the
linear characteristic matrix equation about the singular eigenvalues is derived and then solved numerically
by the LAPACK subroutine. The computed results of the well-known crack and interface crack problems
verify the convergence and accuracy characteristics of the present method. Finally, the methodology is ap-
plied to a selected set of practically useful bimaterial wedges and junctions to study the singular behavior of
the interface edge.
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2. Governing equations
2.1. The basic equations of linear elasticity
In terms of the unknown displacement functions # and w, the fundamental partial differential equations

governing the mechanical equilibrium of the homogeneous isotropic elastic body in plane strain or plane
stress, with reference to a polar coordinate system (r,0), take the form

u 1ou u\ pdu i+p w4+ 3udw
A2 —=+-———= | +=5— - — =
G+ “)(arz T r2> 2o ¢ a0~ a0 "
J4p u A+ 3udu w lawiw /1+2,u@2w7
r orod 200 o2 ror 2 200t
in the absence of body forces. Furthermore, the strain—displacement relations
|
T o
u 10w
T dd 2
) + - o0 (2)
1w dw
L R S
and the linear constitutive equations
g, = (L+2u)e + Aegg
op = A&+ (A+21)ep (3)

0rg = HYrg

where u, ¢. and o, are the components of displacement, strain and stress along the radial direction, respec-
tively; w, gy and oy are the components of displacement, strain and stress along the circumferential direc-
tion, respectively; 7,9 is the shear strain and o, is the shear stress; and A, pu are known as the Lame elastic
constants. The partial differential equations of equilibrium (1) together with the prescribed Neumann and
Dirichlet boundary conditions can completely determine the two fundamental variables u# and w, and by
invoking of which the components of strain and stress are obtained directly from the strain—displacement
relations (2) and linear constitutive equations (3).

2.2. Bimaterial systems

The bimaterial systems can be separated into two cases: bimaterial junction and bimaterial wedge as
illustrated in Fig. 1, with £}, v;and Q; (j = 1,2) denoting the Young’s modulus, Poisson’s ratio and the occu-
pied region of the respective homogeneous isotropic elastic materials. The bonded dissimilar materials cou-
ple to each other through the interface continuity conditions of the displacements and tractions, out of
question, which are regarded as the key ingredient for determining the stress singularity introduced by
the elastic mismatches. In addition, the effects of the geometrical configuration and the boundary condi-
tions at the wedge-side surfaces should be also considered.

The interface continuity conditions of the displacements and tractions have the unique forms at the
interface 0 = 0y,

u“)(r, 0) = u? (r,00) w“)(r, 0y) = W(Z)(}", 0o) (4a)
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Fig. 1. Geometry and coordinate definitions for the bonded bimaterial systems: (a) bimaterial wedge; (b) bimaterial junction.

oy (r,00) = o (r,00) 6l (r,00) = 03 (r,00) (4b)

where the superscripts (1) and (2) denote the corresponding components in the regions 2, and Q,, respec-
tively. However, for the boundary conditions at the two wedge-side surfaces such as 6 = 6; and 6 = 0,,
there are three physically admissible cases according to the arbitrary combinations of traction-free and dis-
placement-clamped, i.e.

(1) Traction-free and traction-free (TT)

7y (r,00) = 0, (r, 01) = 0" (1, 02) = 0, (r,02) = 0 (52)
(2) Traction-free and displacement-clamped (TD)

a ) (r,00) = a3 (r,00) =0 u®(r,0,) = w(r,0,) = 0 (5b)
(3) Displacement-clamped and displacement-clamped (DD)

uV(r,0)) = w(r,0)) = u®(r,0,) = w?(r,0,) =0 (5¢)

If the wedge angles 6, and 6, are both equal to 180°, we obtain the famous interface crack model.
2.3. Asymptotic forms of the basic equations

It is well known from the available analytical and numerical studies that, due to the specifically geomet-
rical configurations such as a crack or/and the elastic mismatch across the interface of the bonded dissimilar
materials, the displacement and singular stress fields with the exponent singularities at the vicinity of the
vertex points (such as the interface edge, interface corner and the tip of the interface crack) are proportional
to certain power of the distance from those points. In general, the singular stress field takes to be of the
asymptotic form, which can be constructed easily provided that the homogeneous solutions of displacement
field are expressed on the basis of separation of variables by

u(r,0) =r’'A,(0) wr,0)=r4y0) (6)
where A,(0) and A,(0) represent the angular variations of displacement components, and s is the singular

eigenvalue. In this paper, only the values in the range 0 < Re(s) <1 are considered because of two reasons.
One is that, for the purpose of occurring stress singularities at the apex, the condition Re(s) < 1 should be
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satisfied. Another is Re(s) > 0 to ensure that both the displacements and elastic strain energy are bounded.
Substituting (6) into the constitutive equations (3), gives

a,(r,0) z,(0) i+2u 0 ) R A
ao(r,0) » =118 Zp(0) b =" A Ols+ |A+2u (4 —|—2u) 2 {Ar(g) } %
O'r()(r7 0) Z,~()(0> 0 u 'u% —u 0

And then, substituting of Eq. (6) into (1) and eliminating the common factor 2 from both sides, the re-
duced differential equations of equilibrium just with respect to the angular coordinate 6 are given by

as’ +hs+c =0 (k=1,2) (8)
where
— (420 4,(0)

a = pAy(0)

by = (A+ u)A5(0)

by = (4 W) AL(0)

e1 = 1AL(0) = (7. + 20)A,(0) — (4 3)4,(0)
& = (1 31)AL(0) — 1uAo(0) + (7 + 2) A}(0)

In Eq. (9) and in the following sections, the single prime () and the double prime (”) respectively denote the
first and second derivatives of the imposed quantities unless otherwise specially stated. Similarly, the re-
duced interface continuity conditions and the reduced boundary conditions can be easily obtained from
Egs. (4) and (5).

Up to now, a one-dimensional boundary value problem for determining the singular behavior of the
bimaterial systems is constructed, which consists of the reduced forms of the prescribed interface continuity
conditions, the boundary conditions at the wedge-side surfaces, and the equilibrium equations to be satis-
fied at all points in the interior of the region.

3. Singularity characteristic equations
3.1. Formulation discretization

The finite cloud method (FCM), which combines collocation with the fixed reproducing kernel tech-
nique, is introduced to construct the meshless point interpolation functions for the discretization of the
boundary value problem outlined in the preceding section. This numerical algorithm uses a corrected kernel
to generate an approximation to the unknown continuous function. As an example, the discrete form of the
approximation for the one-dimensional function f{x) is given by

(x) = Z N x0)f (10)

where 7 is the total number of scattered points in the computational domain occupied by the materials, x is
any point in the domain at which the fixed kernel function is centred, f is the unknown nodal value asso-
ciated with node j, and the interpolation function Njx, x;) centred at x; with respect to node j is defined as

N;(x,x0) = PT(x)Q ™ (), x ) P(x) K (x4 — x;) AV (11)



5518 X.G. Wang | International Journal of Solids and Structures 42 (2005) 5513-5535

where AV is a measure of the domain surrounding the node j, K(x; — x;) is the uncorrected kernel function,
Q(x;, xz) is a symmetric constant matrix of correction function coefficients, and P(x) is the vector of basis
function. In this paper, the quadratic basis

P(x) = [l,x,xz]T (12)

and the cubic spline for the kernel function

0 2 <z
1
K(Xk—xj)zﬁ (2-z)/6 I1<z<2 (13)
(2/3) —z(1-2/2) 0<z <1

are adopted, where z; = |(x; — x;)/d| with d denoting the cloud size in the x-direction.

For the previously derived one-dimensional boundary value problem, the angular variations of displace-
ment fields are treated as the fundamental variables, whose approximated values and derivatives located at
the interior scattered point k are given by the FCM interpolation functions as follows:

) = N (00 Ag(0k) ZN (0)W (14)
j=1
and

AL(0;) = ZN (00, A (0,) = ZN (0w
(15)
A7(0r) = ZN}/(Hk)ﬁ/ Ay(0r) = ZN;.’(H,()W,
j=1 j=1

where #; and w; are the unknown nodal displacement angular variations, and 0y is the angular coordinate of
node k. It should be pointed out that the interpolation function N{(x,x;) has been rewritten into the more
concise expression as N{x;) for simplicity, and this rule is also applicable to the derivatives.

Substituting Egs. (14) and (15) into (7), the discrete approximations of the angular variations of stress
components at the node k are represented as

,(0,) (L+20N(0) 0 IN(6Y) IN'(0,) ;
500 S =s| Ny 0 |+ | (+20NO0) (2 +20)N(0p) { : } (16)
2,0(0k) 0 1N (k) N’ (0r) —uN(0)

where u and w are the column vectors with a size of n for the respective unknown nodal angular variations
of displacement components i; and w;, and N(0y) is the row vector with a size of n for the interpolation
function. In the same manner, the discrete approximations of the reduced differential equations of equilib-
rium (8) corresponding to each scattered points of the whole computational domain are easily given in the
matrix forms

AMU AMW’ 2 + Buu BMW' + Cuu CMW’ ﬁ _ 0 (17)
AVVU AM/'M/ S BM/'M BM/'M/' S CH’u C\/VM} W B
where the entries of the coefficient-submatrix A,,,, B,, and C,,, (p,q = u,w) with a size of n by n are given the

Appendix A. Eq. (17) must be satisfied at all scattered points throughout the whole volume of the consid-
ered body except those points located at the material or geometrical boundaries, whereon the Neumann
and Dirichlet boundary conditions are prescribed.



X.G. Wang | International Journal of Solids and Structures 42 (2005) 5513-5535 5519
3.2. Semi-infinite crack

For the model of a semi-infinite crack in the isotropic material, by the means of (16), the discrete approx-
imations of the Traction-free boundary conditions on the crack surface can be rewritten into the matrix
forms as follows

(5 2l Sl
0 bww * Cou  Cuw w B

where the elements b,, and ¢,, with size of n are the row vectors and whose detailed entries are listed in
Appendix B. In the same way, the discrete approximations of the Displacement-clamped boundary condi-
tions on the crack surface are readily obtained

v el ®

where
[cuu]j = [cwwb = NJ(O) (20)

And then, by invoking of the combinations of Eqs. (18) and (19), we find the discrete approximations of the
three physically admissible boundary conditions on two opposite surfaces of the crack.

In virtue of the finite cloud method, the final discrete representations of the reduced differential equa-
tions of equilibrium and the boundary conditions are derived by now. Prior to solving this boundary value
problem, the boundary conditions prescribed on the nodes located at the two surfaces of the crack should
be incorporated into the equilibrium equations. The actual implementation process of incorporation is effi-
ciently carried out just by replacing the corresponding rows of the equilibrium equations in matrix form by
the specified boundary conditions. Consequently, the so-called generalized eigenproblem nonlinear in the
eigenvalue s is obtained

(A +Bs+C) - x =0 (21)

On account of incorporating the boundary conditions, the matrix A is singular. As a result, the character-
istic equation (21) can be uniquely turned into the standard eigenproblem linear in the eigenvalue w, with
double sizes of the initial eigensystem, by introducing an additional unknown eigenvector y

—CO‘IA —CI-‘B] | m - m - m )

o=s" x=[a w]' y=ox (23)
The characteristic equation is then solved numerically by the LAPACK subroutine to obtain our expected
physically admissible eigenvalues and the associated eigenvectors.

3.3. Bimaterial systems

In the case of the bimaterial systems, such as the bimaterial wedge and bimaterial junction, each domain
occupied by different materials must be approximated with its own point distribution. It should be noted
that the pair of scattered points located on the specified interface have the same coordinates but belong to
different point distributions. Let n; denote the total number of scattered points within the computational
domain € . Implementing the FCM to the reduced displacement interface continuity conditions, yields
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@0t 0
{0 D0 —e@ || @ =0 (24)

ww ww

where ¢V and ¢*) are the row vectors and x*) (k = 1,2) is the column vector with a size of 7, and the en-
tries of ¢) and ¢*) have the same forms as Eq. (20) except that the interpolation functions are constructed
in the respective point distribution. Similarly, implementing the FCM to the reduced traction interface con-
tinuity conditions, we have

O] N NE)) M o2 L@ M
buu 0 : buu 0 s+ Cou Cow : Cou Con X =0 (25)
0 b(Jz‘ ; 0 _b(2) c(') c(]) ; _c(z) _c(z) X(Z)

ww wi ww wu ww

where b[(fy and cL’;) are the row vectors with a size of n;, whose entries have the same forms as those listed in
Appendix B except that the domain occupied by different material has the respective elastic constants and
interpolation functions are constructed in its own point distribution. Finally, implementing the FCM to the
reduced differential equations of equilibrium (8) for the bimaterial systems, we find

c 0 x(D
( 0 C(2>1) [x(z) =0 (26)

where A®, B® and C® are the matrices with a size of 2n; by 2n; whose entries can be constructed in the
same matter as Eq. (17) for each domain but with the previously mentioned exceptions.

What to do next is to incorporate the boundary conditions and the interface continuity conditions of
displacements and tractions into the reduced differential equations of equilibrium. For the fully bonded
bimaterial junction, only the interface continuity conditions along the two perfectly bonded interfaces (such
as 0 =0 and 0 = 60,) are considered, which are used to replace the eight reduced equilibrium equations cor-
responding to those scattered point located at the specified interface to accomplish the incorporating pro-
cess. While for the bimaterial wedge and debonded bimaterial junction, the boundary conditions at the
wedge-side surfaces (such as 0 = 0; and 0 = 6,) besides the interface continuity conditions along the inter-
face (such as 6 = 0°) should also be taken into account, and the similar replacement technique is carried
out. Consequently, the so-called generalized eigenproblem is obtained, which can be readily transformed
into the final standard eigenproblem.

B 0
0 BY

AY 0

2
0 A® A

s+

3.4. The displacement and singular stress fields

Consider the characteristic matrix equation (22) of the real square matrix D. Any solution to the char-
acteristic equation is an eigenvalue of D corresponding to at least one eigenvector. Note that matrix D is
nonsymmetric, the physically admissible singular eigenvalues and the associated eigenvectors may be either
real or conjugate complex. Without loss of generality, one representative case that the singular eigenvalues
are two real or a pair of conjugate complex numbers, namely the case with two real or oscillatory singu-
larities, is considered to study the displacement and singular stress fields in the vicinity of the singular point.

3.4.1. Two real singularities

In the case of the singular stress fields with two real singularities, the discrete displacement and singular
stress components at the scattered meshless points 6, can be represented in the summation form as
following

u(r, Qk) = Y]K]Ai(gk) + r‘gan/liI(f)k)

s I 11 (27)
w(r, Gk) = IKIAg(ek) + I’JZKHAH (Hk)
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and
aup(r, 0c) = P K Z(06) + 2T K Zop(0c) (o, f =1, 0) (28)

where K7 and Ky denote the stress intensity factors for mode I and II respectively. The angular variations
A/(6;) and Z‘iﬁ(ﬁk) relate to the computed eigenvectors through Egs. (14) and (16), respectively. Further-
more, the displacement and singular stress components between two adjacent meshless points can be readily
obtained by means of the interpolation method. In order to compare the numerical results with the avail-
able explicit analytical solutions, it is worthwhile to normalize the angular variations A’(6) and Z{;ﬁ(()) by
an identical rule Z;. Applying the rule to Egs. (27) and (28), we then have the displacement and singular
stress fields with the specifically normalized angular variations.

3.4.2. Oscillatory singularities A .
In this case, the relevant quantities to the displacement and singular stress fields, including 4}(0), X},(0),
s; and K, are pairs of conjugate complex numbers, i.e.

24(0) = Z3(0) = Z55(0) —iZ2(0) (29)
S| =52 = SRe 1+ 1Smm
7 KRe + iKlm
Ki=Kyg=
1 1 Ner

where 1 = v/ —1. Substituting these expressions into Eq. (27), we have

1 .
u(r, 0) = ——=r"Kre[AX(0;) cos(sim In7) + A™(0) sin(sim In 7)]

V2n
- \/%EREKIIH [AR(0;) sin(sim In ) — AM™(0;) cOS(spm In7)]
T
| (30)
w(r,0;) = N PR Ko [AR(0;) cos(sim Inr) + A" (0;) sin sy, In7)]
Y
1
- PRK i [ARE(0;) sin(sp In7) — A" (0;) coS (51 In 7)]
V27n
In the same way, the discrete singular stress fields are readily derived
1 .
au(r,00) = \/—z_nr"‘e‘lKRe (255 (0k) cos(sim In 7) + X7 (6;) sin(sy In )]
- \/lz_r“‘e‘lKlm (255 (0k) sin(sim In ) — 272 (0,) cos(s1m In )] (31)
T

Similar to the case with two real singularities, the complete displacement and singular stress fields can be
obtained by means of the interpolation method. In addition, the angular variations of displacement and
stress components relate to the computed eigenvectors through Eqs. (14) and (16), respectively. Prior to
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comparing with the analytical solutions, the numerical angular variations of displacement and singular
stress fields should be normalized by a specified identical rule.

4. Numerical results and discussions

In this section, the convergence, accuracy and efficiency characteristics of the proposed boundary value
method for determining the singular behavior of the stress field in the vicinity of the singular point is ver-
ified, where the isotropic metal materials Nickel and Aluminum are regarded to be the material 1 and 2 of
the bimaterial system respectively. The relevant material properties are E; =210 GPa, v; =0.31 and
E, =68.9 GPa, v, =0.25. In the implementation of numerical simulation, the scattered meshless points
are uniformly distributed in material 1 and 2 of the bimaterial system with n; and n, denoting the point
number of the respective material. Furthermore unless specifically stated, the boundary conditions pre-
scribed on the two wedge-side surfaces are both set to be Traction-free.

4.1. Interface crack

The interface crack problem with the bonded interface along 6 = 0° is first analyzed numerically based
on the same point distribution, i.e. n; =n,. The exact solutions of the order of stress singularity are
0.5 +10.0603 for plane strain and 0.5 +10.0636 for plane stress. The variations of the computed orders
of stress singularity with the point number n; or n, are shown in Fig. 2. It is obvious that the numerical
results exhibit strong and monotonic convergence toward the exact solutions with increasing the number
of scattered points. When the point number n; or n, reaches to 51, the numerical results are
0.4984 +10.0603 for plane strain and 0.4985 +10.0637 for plane stress, which are well agreement with
the exact solutions. On the basis of the results shown in Fig. 2, it is can be concluded that the present devel-
oped numerical method on determining the orders of stress singularity has high accuracy and quick con-
vergence characteristics.

In addition, the angular variations of displacement and singular stress fields are also investigated. The
asymptotic expressions of the analytical displacement and singular stress fields are of the forms

0.55 T T T T T

0.50 f(yo——o—‘u-—-u—v—a

0.45} 1Re(s Im(s A
Panestrain —4&— —A—

0.40% Planedress —O0—  —e— L

0.064 - 2 0 o ¢ ¢ ¢ o o ]

0.060 F v 3
0058 I " 1 " 1 " 1 " 1 " 1 "
0 10 20 30 40 50 60

Number of scattered points n, or n,

Order of stress singularity
o
o
(2]
N
T

Fig. 2. Convergence of the orders of stress singularity for interface crack problem.
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Uy, = \/;[Re(Kri‘)Ai(Q, &, vj, 1) + Im(Kr) AN (0,6,v;, )] (j=1,2) o)
Gop = \/% [Re(Kr)24,(0,) + Im(Kr) £5(0,2)| (.8 = 1,0)
and
K=Ki+iKy e=3 In <%> (33)

where k; = 3 — 4v; for plane strain and x; = (3 — v;)/(1 + v)) for stain stress with the subscript ; referring to
the dissimilar materials. The explicit analytical expressions of the angular variations of singular stress field
are given by Rice et al. (1990) and those of displacement field are presented in the Appendix C. The dis-
placement and singular stress fields can also be rewritten into the real forms as

0.06 T T T T T
O | |
» I \O Ar 6
5 . Crack: [ °
S 004} ‘\ : E
s 8 Interfacecrack: O o
5
o]
= 0.02
j@)]
]
B
N
w 0.00
E
(=]
Z -
-0.02L— ~ ~ ~ 1
-180 -120 -60 0 60 120 180
(@) Angular coordinate
0.06 T T T T T
3‘\
L~ | |
0 N Ar ]
& 0041 ® Crack: [ o -
ks Interfacecrack: O o
a A
> .
&8 0.02
=
(@]
]
EB 0.00
o
£
2 0.02
1 1 1 1

-180

-120

-60 0 60

(b)

Fig. 3. Normalized displacement angular variations for pure Mode I loading of a crack and an interface crack: (a) plane strain; (b)
plane stress.

Angular coordinate 6
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Uy =y /é](l [A43(0,&,v;, ;) cos(elnr) + A} (0,¢,v;, ;) sin(elnr)]

- 1/2LKH [A5(0,¢,v;, ) sin(elnr) — A (0, &, v;, ;) cos(eInr)]
n

(34)
1
Cup :ﬁlq [Ziﬁ(G, g)cos(eInr) + 27(0, &) sin(eIn r)}
1 I : 1l
\/TEK” [Zaﬁ(é), e)sin(elnr) — X4(0, ¢) cos(eln r)}

Note that Eq. (33) has the same forms as Egs. (30) and (31) provided that the following equivalence
relations

SRe + 181m <= 0.5+1i¢ Re+ilm < I +ill (35)
0.06 T T T T T
3\\ A 1] A I
o 0.04F H r o
5 Crack: m °
® I :
£ oo tq‘ Interfacecrack: O o
>
[
= 0.00
(o))
% .
8 002 7
© ¥ o
® ;
% 0.04F Q," 8
4 K .
Qg
-0. 6 N Il N Il Il Il Il
-180  -120 -60 0 60 120 180

() Angular coordinate 6

0.06 T T T T T

EN
I I

o 0.04 v 0
& . Crack: " °
= o .
£ 002 . Interfacecrack: O o
>
o
=S 0.00
j@)]
8
E 0.02} :
= g
£ o
5 0041 .
4 Q.
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Fig. 4. Normalized displacement angular variations for pure Mode II loading of a crack and an interface crack: (a) plane strain; (b)

plane stress.
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are considered. In other words, the real part corresponds to the mode I and imaginary part to the mode II.
If the bonded dissimilar materials have the same elasticity, we find ¢ = 0 and the interface crack problem
reduces to the well-known crack problem in a homogeneous isotropic material.

The numerical results of the angular variations of the displacement and singular stress fields are obtained
on the basis of the eigenvectors associated with the physically admissible eigenvalues (n; = n, = 51). The
normalized rule for the interface crack problem is set to be Xx¢(0) +iX}™(0) = 1, which is identical to
>Re(0) + 12" (0) = 1. While for the crack problem, the rule reduces to be X}(0) = 2'}(0) = 1. The compar-
isons of the normalized numerical results with the exact solutions are plotted against with the angular coor-
dinate 6 in Figs. 3-6. The solid symbols and continuous lines denote the numerical results and exact
solutions of the well-known crack problem respectively. The hollow symbols and the dashed lines denote
the numerical results and exact solutions of the interface crack problem respectively. It is clear that the
numerical results are coincident with the exact solutions, and 51 scattered points uniformly distri-
buted in each domain of bimaterial systems are enough to achieve high accuracy. This technique of point
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Fig. 5. Normalized stress angular variations for pure Mode I loading of a crack and an interface crack: (a) plane strain; (b) plane
stress.
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Fig. 6. Normalized stress angular variations for pure Mode II loading of a crack and an interface crack: (a) plane strain; (b) plane

stress.

Table 1

The orders of stress singularity for the common bimaterial wedges with various boundary condition combinations

+60 State Mode Numerical results Exact solutions
150° Plane strain Mode I 0.4508 0.4517
Mode II 0.3102 0.3115
Plane stress Mode I 0.4462 0.4470
Mode II 0.3151 0.3163
170° Plane strain Oscillatory 0.4676 +10.0571 0.4691 +i0.0572
Plane stress Oscillatory 0.4677 £10.0610 0.4691 £10.0611

distribution will be used in the following numerical analysis unless otherwise stated. By now, we reach the
conclusion that the present numerical method can efficiently determine the two important parameters, the
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order of the stress singularity and the associated angular variations, of the asymptotic displacement and
singular stress fields. In the following, we will use this method to study the singular behavior of common
bimaterial wedge and junctions. In addition, from the Figs. 5(a) and (b) we find that the angular variations
of mode I normal stress along the radial direction are discontinuous at the interface. The absolute quantity
of the jump relates only to the parameter ¢ by |4tanh(ern)|.

4.2. Bimaterial wedge

In this subsection, the ability for determining the angular variations of the common bimaterial wedges is
examined first. The two selected analytical models are A with wedge angle 6; = —6, = 150° and B with
0, = —0,=170° . From the exact and numerical results presented in Table 1 we know that the model A
has two real stress singularities and model B has oscillatory stress singularity. The computed orders of stress
singularity for different deformation modes are all well agreement with the relevant exact solutions. In the
meantime, the normalized angular variations of displacement and singular stress fields are easily obtained,
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-0.06 s 1 s 1 s 1 s 1 s 1 s
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(b) Angular coordinate 6

Fig. 7. Normalized displacement angular variations of a common bimaterial wedge with two real stress singularities: (a) plane strain;
(b) plane stress.
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where the normalized rule is set to be X}, (0) = 2™ (0) = 1 for model A and X},(0) +iX}}(0) = 1 for mode B.
The computed angular variations against with the angular coordinate 0 for model A are depicted in Figs. 7
and 8, and for model B are depicted in Figs. 9 and 10. The solid symbols and lines in the Figures denote the
results of mode I, while the hollow symbols and the dashed lines denote the results for mode II. It can be
seen from the Figures that at the interface both X'(6) and X(0) are discontinuous for model A, but only
>1(0) is discontinuous for model B. The 2!(0) is coupled with X' (0) at two wedge-side surfaces even though
on which the Traction-free boundary conditions are prescribed. In addition, we cannot find a direction
along which the both deformation modes of Xy(0) and X,4(6) are decoupled each other. All of these are
the particular new features of the common bimaterial wedge comparing with the well-known crack and
interface crack problems.

Furthermore, four special cases of the bimaterial wedges, namely a right angle (0, = —0, = 45°), a half
plane (0; = —0,=90°), a right-angled corner (0; =90° and 0,= —180°) and an interface crack
(0; = —0, = 180°) which are of very interest in engineering, are considered to study the effects of various
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boundary conditions to the stress singularity. Table 2 shows the order of stress singularities corresponding
to four physically admissible boundary condition combinations. It is found that the oscillatory stress sin-
gularities of an interface crack with mixed boundary conditions TD and DT are weaker than those with
homogeneous boundary conditions TT and DD. For the right-angled corner, there are single and two real
stress singularities for the mixed and homogeneous boundary conditions respectively. In the case of a half
plane, oscillatory stress singularity is found for DT and no stress singularity is found for TD. Finally for the
right angle wedge, the stress singularity exists only for mixed boundary condition DT. The comparisons of
the results presented in Table 2 indicate that the various combinations of boundary conditions do have a
significant influence on the number and strength of the stress singularity.

4.3. Bimaterial junction

A fully bonded nickel-aluminum bimaterial junction in plane strain is considered in Fig. 11 for varying
wedge angle 6; with respect to material 1. It can be seen that there are two real singularities in the regions
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Fig. 9. Normalized displacement angular variations of a common bimaterial wedge with oscillatory stress singularity: (a) plane strain;
(b) plane stress.
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Fig. 10. Normalized stress angular variations of a common bimaterial wedge with oscillatory stress singularity: (a) plane strain;

(b) plane stress.

Table 2

The orders of stress singularities for a right angle wedge, a half plane, a right-angled corner and an interface crack

Cases Right angle Half plane Right-angled corner Interface crack

TT - 0.0601 0.4980 0.2306 0.4989 +i0.0603
DD - 0.1732 0.3593 0.1091 0.4988 +10.0401
TD - - 0.0793 — 0.1672 4 10.0252
DT 0.0788 0.3348 +1i0.1099 0.2072 — 0.3316 +10.0754

90° < 0; <180° and 262.5° < 0, < 270°, and only one real singularity in the region 180° < 0; < 262.5°.
When 6, = 180°, no singularity is found. The singularities for this kind of model are much weaker than
the classical inverse square root singularity. On the other hand, a debonded nickel-aluminum bimaterial
junction in plane strain is considered in Fig. 12 for varying wedge angle 6. Note that the singularity be-
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Fig. 11. Orders of stress singularity for a fully bonded bimaterial junction.
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Fig. 12. Orders of stress singularity for a debonded bimaterial junction.

comes very complex and one to three stress singularities are found due to the presence of a crack between
two dissimilar materials. It is very interesting that there are one real and a couple of conjugate complex
singularities when 6, is larger than 180° and less than 240°, and three real singularities in a small region
near 270°.

Furthermore, the normalized angular variations of displacement and singular stress fields are shown in
Figs. 13 and 14 corresponding to the debonded bimaterial junction (0; = 210°) with one real and a couple
of conjugate complex eigenvalues. The deformation of mode I corresponds to the real part of the oscillatory
singularity (0.4548), mode II corresponds to the imaginary part of the oscillatory singularity (0.0521), and
mode IIT corresponds to the real singularity (0.1042). The normalized angular variations associated with
modes I, IT and III are denoted by the solid, dashed and dotted continuous lines respectively. The normal-
ized rules used here are the maximum of the modulus max || X},(0) 4 1X},(0)|| = 1 for oscillatory singularity
and the maximum of the absolute value max | X};/(0) |= 1 for the real singularity.
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Fig. 13. Normalized displacement angular variations of a debonded bimaterial junction with one real and a couple of complex stress
singularity.
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Fig. 14. Normalized stress angular variations of a debonded bimaterial junction with one real and a couple of complex stress
singularity.

5. Conclusions

A novel boundary value method for investigating the singular behavior of bimaterial systems is devel-
oped based on the governing equations of linear elasticity and the eigenfunction expansion technique. Dis-
cretizing the resulted formulations by using of the finite cloud method, we obtain the standard
eigenproblem in singular eigenvalue. The characteristic matrix equation is then solved numerically by
the LAPACK subroutine to obtain the physically admissible eigenvalues and the associated eigenvectors.
Two benchmark problems, the well-known crack and interface crack, are analyzed to validate the present
proposed numerical method. The calculated orders of stress singularity exhibit strong and monotonic con-
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vergence toward the exact solutions with increasing the number of scattered points, and the convergent re-
sults show very good agreement between the boundary value method and the exact solutions. Subsequently,
this powerful method is successfully used to study the singular behavior of the common bimaterial systems.
The significant influence of various boundary conditions on both the number and strength of the stress sin-
gularity is also verified.

Compared to the analytical approaches and finite element methods, the developed boundary value
procedure originated from the equilibrium equations is more powerful and wieldy for the study of stress
singularity of the composites with complex geometrical configurations.
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Appendix A
Auly = (2 200N,(00) (A1)
(Al = 1N, (00) (A2)
Buuy, = (24 N(0)) (A3)
Boul, = (A WN,(0,) (A4)
Ay = [Awdy = Buly = Buly = 0 (A3)
[Culiy = 1V}(6) — (2 + 2u)N,(60,) (A6)
(Culyy = —(+ 30N, (6,) (A7)
(Culyy = (4 300N)(00) (A8)
(Culy = (4 20)N(0)) — 1V, (00) (A.9)

Appendix B

[buu]_/ = Wj(e) (B.1)
[bWW]A/ = uN;(0) (B.2)
(eul, = (2+ 20N, (6) (B.3)

[eun]; = (4+ 21)N}(0) (B4)
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[cwu]j = NN}(G) (B.5)

[eun]; = —HN,(0) (B.6)

Appendix C

Listed below are the angular variations of the displacement field in the tip of an interface crack for mode
I and mode II deformations

0 .0 30 .30 .0
Al =g |:Kj <cos§ +2¢ sz) - B; (cos7 +2¢ sm7) — (1 4+ 4¢%)sin0 smz] (C.1)
I 30 0
Ay =o;|K s1n + 2¢ cos +B; s1n —2¢ cos — 1 + 4¢%) sin 0 cos 3 (C2)
u 0 30 30 . 0
A = sm —|— 2¢cos | + f;| sin—- — 2ecos— | + (1 + 4¢?) sin 0 cos (C.3)
" 2 2 2 2
0 30 0
Al = [ (cos— + 2esin 2) + B, (cos 30 + 2¢sin 7) 1 4 4¢?) sin 0sin 5] (C4)
where
efc(nf(?)
= C.S
A (1 + 4¢?) cosh(me) (€3)
es(n+6) Cé
2= (1 + 4¢2) cosh(ne) (€6)
ﬁl — eZs(n—O) (C7)
/32 _ 672s(n+9) (CS)

The subscripts 1 and 2 denote the materials 1 and 2 respectively. If the parameter ¢ is equal to zero, the
angular variations for the well-known crack problem are obtained.
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